Key figures


Within the European economy, digital modelling activities and the simulation of human motion in particular, have emerged during the last decades in various domains ranging from automotive and truck over healthcare, construction and pedestrian simulation to the gaming industry. Even though differing in their respective scope, the ability to realistically predict real-world observations has shown to be a key technology in order to remain competitive. For mechanical and mechatronic components, this trend is already covered by various research projects related to smart factories. In contrast, the generation of a rich repertoire of realistic human motions in complex and possibly highly collision afflicted environments is not sufficiently addressed by commercial tools, yet. Moreover, complex process workflows with an exhaustive number of possible manual task sequences can only be partly addressed today, since process variants have to be modelled by hand. As manual modelling is inevitably linked with additional effort, the potential cost reduction is significant. In order to introduce approaches and software solutions, which are capable to automatically simulating a rich repertoire of realistic human motions, MOSIM aims to develop and implement a generic concept which is inspired by the Functional Mock-up Interface (FMI) standard. MOSIM transfers the idea of co-simulating models from different simulation environments to the field of human simulation by means of introducing the Motion Model Units (MMU).

Use cases

Project structure